Link Search Menu Expand Document


This is a collection of various works that focus on CREST and xtb.

Phys. Chem. Chem. Phys., 2020, 22, 7169-7192.
Cover associated with publication Phys. Chem. Chem. Phys., 2020, 22, 7169-7192.

CREST Main References

  • CREST: Pracht, P.; Bohle, F.; Grimme, S.; Automated exploration of the low-energy chemical space with fast quantum chemical methods, Phys. Chem. Chem. Phys., 2020, 22, 7169-7192. DOI: 10.1039/C9CP06869D

  • CREST 3.0: Pracht, P.; Grimme, S.; Bannwarth, C.; Bohle, F.; Ehlert, S.; Feldmann, G.; Gorges, J.; Müller, M.; Neudecker, T.; Plett, C.; Spicher, S.; Steinbach, P.; Wesołowski, P.A.; Zeller, F.; CREST — A program for the exploration of low-energy molecular chemical space, J. Chem. Phys., 2024, 160, 114110. DOI: 10.1063/5.0197592

  • Conformational Entropy: Pracht, P.; Grimme, S.; Calculation of absolute molecular entropies and heat capacities made simple, Chem. Sci., 2021, 12, 6551-6568. DOI: 10.1039/D1SC00621E

  • Meta-Dynamics Simulations: Grimme, S.; Exploration of Chemical Compound, Conformer, and Reaction Space with Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations, J. Chem. Theory Comput., 2019, 15 (5), 2847-2862. DOI: 10.1021/acs.jctc.9b00143

  • Protonation Site Determination: Pracht, P.; Bauer, C.; Grimme, S. Automated and efficient quantum chemical determination and energetic ranking of molecular protonation sites, J. Comput. Chem. 2017, 38 (30), 2618-2631. DOI: 10.1002/jcc.24922

  • Quantum Cluster Growth (QCG): Spicher, S.; Plett, C.; Pracht, P.; Hansen, A.; Grimme, S.; Automated Molecular Cluster Growing for Explicit Solvation by Efficient Force Field and Tight Binding Methods, J. Chem. Theory Comput., 2022, 18 (5), 3174-3189. DOI: 10.1021/acs.jctc.2c00239

  • Minimum Energy Crossing Point (MECP) sampling: Pracht, P.; Bannwarth, C.; Fast Screening of Minimum Energy Crossing Points with Semiempirical Tight-Binding Methods, J. Chem. Theory Comput., 2022, 18 (10), 6370-6385. DOI: 10.1021/acs.jctc.2c00578.

  • MC-ONIOMn: Wesołowski, P.A.; Wales, D.J.; Pracht, P.; Multilevel Framework for Analysis of Protein Folding Involving Disulfide Bond Formation, J. Phys. Chem. B, 2024, 128, 3145–3156. DOI: 10.1021/acs.jpcb.4c00104

GFNn-xTB Methods

  • Review: Bannwarth, C.; Caldeweyher, E.; Ehlert, S.; Hansen, A.; Pracht, P.; Seibert, J.; Spicher, S.; Grimme, S.; WIREs Comput. Mol. Sci., 2020, 11, e01493. DOI: 10.1002/wcms.1493

  • GFN1-xTB: Grimme, S.; Bannwarth, C.; Shushkov, P.; A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parameterized for All spd-Block Elements (Z = 1-86). J. Chem. Theory Comput., 2017, 13 (5), 1989-2009. DOI: 10.1021/acs.jctc.7b00118

  • GFN2-xTB: Bannwarth, C.; Ehlert, S.; Grimme, S.; GFN2-xTB — An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions J. Chem. Theory Comput. 2019, 15 (3), 1652–1671. DOI: 10.1021/acs.jctc.8b01176 doi:10.1021/acs.jctc.2c00578

  • xTB-iFF: Grimme, S.; Bannwarth, C.; Caldeweyher, E.; Pisarek, J.; Hansen, A.; A general intermolecular force field based on tight-binding quantum chemical calculations, J. Chem. Phys., 2017, 147, 161708. DOI: 10.1063/1.4991798

  • GFN-FF: Spicher, S.; Grimme, S.; Robust atomistic modeling of materials, organometallic and biochemical systems Angew. Chem. Int. Ed. 2020, 59, 15665. DOI: 10.1002/anie.202004239


  • Minimum Energy Crossing Points with GFN0-xTB: Pracht, P.; Bannwarth, C.; Finding Excited-State Minimum Energy Crossing Points on a Budget: Non-Self-Consistent Tight-Binding Methods, J. Phys. Chem. Lett., 2023, 14, 4440–4448, DOI: 10.1021/acs.jpclett.3c00494

  • Supramolecular Complexes containing Heavy Main Group Elements: Gorges, J.; Grimme, S.; Hansen, A.; Reliable prediction of association (free) energies of supramolecular complexes with heavy main group elements - the HS13L benchmark set, Phys. Chem. Chem. Phys., 2022, DOI 10.1039/D2CP04049B

  • Conformational Entropy in Solution: Gorges, J.; Grimme, S.; Hansen, A.; Pracht, P.; Towards understanding solvation effects on the conformational entropy of non-rigid molecules, Phys. Chem. Chem. Phys., 2022, 24, 12249-12259. DOI: 10.1039/D1CP05805C

  • Free Energy Calculations: Grimme, S.; Bohle, F.; Hansen, H.; Pracht, P.; Spicher, S.; Stahn, M.; Efficient Quantum Chemical Calculation of Structure Ensembles and Free Energies for Nonrigid Molecules, J. Phys. Chem. A, 2021, 125 (19), 4039-4054. DOI: 10.1021/acs.jpca.1c00971

  • Conformational Energies of Transition Metal Complexes (TMCONF40): Bursch, M.; Pracht, P.; Hansen, A.; Grimme, S. Theoretical study on conformational energies of transition metal complexes Phys. Chem. Chem. Phys. 2021, 23, 287-299. DOI: 10.1039/D0CP04696

  • Molecular Muscles: Kohn, J.; Spicher, S.; Bursch, M.; Grimme, S.; Quickstart guide to model structures and interactions of artificial molecular muscles with efficient computational methods, Chem. Commun., 2022, 58, 258-261. DOI: 10.1039/D1CC05759F

  • Small Molecule Binding in Metal Organic Polyhedra: Spicher, S.; Bursch, M.; Grimme, S. Efficient Calculation of Small Molecule Binding in Metal–Organic Frameworks and Porous Organic Cages J. Phys. Chem. C 2020, 124 (50), 27529-27541. DOI: 10.1021/acs.jpcc.0c08617

  • pKa Prediction (SAMPL6): Pracht, P.; Wilcken, R.; Udvarhelyi, A.; Rodde, S.; Grimme, S.; High accuracy quantum-chemistry-based calculation and blind prediction of macroscopic pKa values in the context of the SAMPL6 challenge., J. Comput.-Aided Mol. Des., 2018, 32, 1139-1149. DOI: 10.1007/s10822-018-0145-7

  • pKa Prediction: Pracht, P.; Grimme, S.; Efficient Quantum-Chemical Calculations of Acid Dissociation Constants from Free-Energy Relationships, J. Phys. Chem. A, 2021, 125 (25), 5681-5692. DOI: 10.1021/acs.jpca.1c03463

  • NMR Spectra Simulation: Grimme, S.; Bannwarth, C.; Dohm, S.; Hansen, A.; Pisarek, J.; Pracht, P.; Seibert, J.; Neese, F.; Fully Automated Quantum Chemistry Based Computation of Spin–Spin Coupled Nuclear Magnetic Resonance Spectra Angew. Chem. Int. Ed. 2017, 56 (20), 12485–12491. DOI: 10.1002/anie.201708266

  • NMR Spectra Simulation (Macrocycles): Bohle, F.; Grimme, S.; Hydrocarbon Macrocycle Conformer Ensembles and 13C-NMR Spectra, Angew. Chem. Int. Ed., 2022, 61, e202113905. DOI: 10.1002/anie.202113905

  • Optical Rotation Spectra Simulation: Bohle, F., Seibert, J.; Grimme, S.; Automated Quantum Chemistry-Based Calculation of Optical Rotation for Large Flexible Molecules, J. Org. Chem., 2021, 86 (21), 15522-15531. DOI: 10.1021/acs.joc.1c02008

  • IR Spectra Simulation: Pracht, P.; Grant, D.F.; Grimme, S.; Comprehensive Assessment of GFN Tight-Binding and Composite Density Functional Theory Methods for Calculating Gas-Phase Infrared Spectra, J. Chem. Theory Comput., 2020, 16 (11), 7044-7060. DOI: 10.1021/acs.jctc.0c00877

Back to top

Copyright © 2022-2024 Philipp Pracht.

CREST is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.